ELEC50001 EE2 Circuits and Systems

Problem Sheet 5 - Data Converters (Lectures 8 and 10)
(Question ratings: $\mathrm{A}=$ Easy, $\ldots, \mathrm{E}=\mathrm{Hard}$. All students should do questions rated A, B or C as a minimum)
1B. A $31 / 2$ digit Digital Voltmeter has a display range of ± 1999 and an accuracy of ± 2 on the display. How many bits would a binary A/D converter need to have for its ± 0.5 LSB accuracy to be as good as that of the DVM?

2B. A 12-bit converter has a resolution of 1 mV (i.e. $1 \mathrm{LSB}=1 \mathrm{mV}$) and input voltages in the range $\pm 0.5 \mathrm{mV}$ are converted to the value 0 . What range of input voltages will be converted to -2047 ?

3B. A 10-bit converter converts an input voltage x to the value floor $(x / 10 \mathrm{mV})$. If $1 \mathrm{~V}<x<8 \mathrm{~V}$, what range of output values will be obtained ?

4C. $\mathrm{X} 3: 0$ is a 4 -bit signed number whose value, X , lies in the range -8 to +7 . If the logic levels of V3:0 are 0 V and +5 V , choose values for R 0 to R 4 so that VOUT is equal to $\mathrm{X} / 8$ volts.

5C. The composite video signal to drive a monochrome TV monitor takes one of three different voltages according to the values of two digital signals DATA and SYNC:

DATA	SYNC	V $\mathbf{\text { OUT }}$
0	0	0.0
1	0	0.7
0	1	-0.3
1	1	Don't Care

Design a circuit to generate VOUT having a 50Ω output impedance. You may assume that output logic levels are 0 and 5 V and that +5 V and -5 V power supplies are available should you need them. You do not need any op-amps although you will need at least one logic gate.

6B. Signals on a compact disc are stored as sequences of 16-bit numbers. Determine the maximum undistorted signal-to-noise ratio obtainable for a music signal whose peak amplitude is 10 times as great as its RMS value.

7C. A sample-hold circuit is used to store the input voltage of a 12-bit A / D converter during each conversion. The sample-hold circuit has an aperture uncertainty of 5 ns and a leakage current of $\pm 1 \mathrm{nA}$. The A/D converter has an input voltage range of $\pm 10 \mathrm{~V}$.
If the input voltage is a sine wave of amplitude 10 V , calculate the input frequency at which the aperture uncertainty will result in an error of $\pm 0.5 \mathrm{LSB}$ [surprisingly low].
If the sample-hold uses a storage capacitor of 200 pF calculate how long the input voltage can be held before it changes by 0.5 LSB due to the leakage current.

